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Use of a Performance Based Approach to Determine Data Quality Needs 
for the PM-Coarse (PMc) Standard

Executive Summary

Data quality objectives are qualitative and quantitative statements derived from the DQO Process
that clarify study objectives, define the appropriate type of data, and specify the tolerable levels
of potential decision errors that serve as the basis for establishing standards for the quality and
quantity of data needed to support decisions.

Using some of the same techniques that were used to develop DQOs for fine particulate NAAQS
(PM2.5),  the EPA developed a DQO software tool that provides decision makers with an
understanding of the consequences of various input parameters, such as sampling frequency, data
completeness, precision and bias and how these uncertainties affect the probability of making
decision errors.  Since both manual and continuos (automated) methods may be proposed for use
in estimating the coarse particulate fraction, and the measurement uncertainties are unique to
both methods, the DQO process can help weigh the benefits and disadvantages of these methods.

Preliminary data was collected from sites providing coarse particulate estimates from around the
country as well as data from current multi-site performance evaluations conducted by the EPA
National Environmental Research Laboratory. This data provided estimates of reasonable input
parameters that were used to generate decision error performance curves.  Preliminary decision
error performance curves will be reviewed for effects of varying input parameters such as
precision, bias, sampling frequency and completeness on both continuous and manual methods.

The DQO software provides user-friendly insights into the effects of uncertainty on decision
making and identifies that the annual standard gray zones are most sensitive to population
variability, sampling frequency, measurement bias, and completeness. The daily standard is
sensitive to the variables listed above in addition to precision.

The goal of the paper is to provide details on the DQO approach taken and to elicit comments
from CASAC as to the merits of this approach.

Discussion 

DQOs are qualitative and quantitative statements derived from the DQO Process that clarify the
monitoring objectives, define the appropriate type of data, and specify the tolerable levels of
measurement errors for the monitoring program.  By applying the DQO Process towards the
development of a quality system, the EPA guards against committing resources to data collection
efforts that do not support a defensible decision.  The Office of Air Quality Planning and
Standards (OAQPS) is contemplating the development of a particulate matter coarse (PMc)
National Ambient Air Quality Standard (NAAQS).  Since OAQPS developed a DQO in 1997 for
PM2.5, it was felt that an effort should be made to develop a DQO for PMc prior to any
promulgation in order to provide decision makers with some idea of the ramifications of data
uncertainty.  
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Decision makers need to feel confident that the data used to make environmental decisions are of
adequate quality.  The data used in these decisions are never error free and always carry some
level of uncertainty.  Because of these uncertainties, there is a possibility that decision errors can
be made when measurements appear to provide an estimate above some action limit when the
true estimate is below, or below an action limit when the true estimate is above.  Therefore,
decision makers need to understand and set limits on the data uncertainties that lead to these
types of decision errors.  The DQO process allows one to identify these data uncertainties,
determine their effect on data quality and develop quality systems and network designs to reduce
or maintain these uncertainties within acceptable levels. The intent of this paper is to describe
the process used to identify data uncertainties, and by using this information, develop a DQO
tool to help decision makers and those required to implement the monitoring program develop a
quality system for PMc. 

The DQO Performance Curve

OAQPS used performance curves to determine the effect of various types of uncertainties on
decision error.  Figure 1 is an example of a performance curve.  The terms used in the figure are
explained below:

Action limit - The action limit is the concentration or value that causes a decision maker to
choose one of the alternative actions.  A good example of action limits are the NAAQS standards
where a concentration is identified and used to determine attainment or alternatively
nonattainment of the NAAQS 

Performance curves - Two performance curves have been generated based upon a number of
input parameters of population and measurement uncertainties. The points along the curve are
the true unknown concentration.  The reason for the two curves is to represent measurement bias.
The curve on the left side of the action limit represents the true concentration and the decision
error relative to a positive 10% bias (as well as the other uncertainty values) while the curve on
the right hand side of the action limit represents a true concentration and the decision error
relative to a negative 10% bias (as well as the other uncertainty values). 
 
Decision Error Limits - These limits are established by the decision makers and describes the
decision makers’ “comfort” with making a decision error, in the sense that a different decision
would have been made if the decision maker had access to “perfect data” or absolute truth.  The
decision error limit in this example is 5%. 

Gray Zone - The gray zone is the area between the performance curves where the decision
errors are larger than the decision error limits; where the high cost or resources required to
“tighten” the gray zone outweigh the consequences of choosing the wrong course of action.

Power - This is the probability of deciding that an observed design value exceeds the action
limit.
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Figure 1 Example of a DQO Performance Curve

From Figure 1 the following statements could be made:

< If the true estimate is 18.8 ug/m3 and if the measurement system has a negative bias of
10%, then 95% of the time the observed estimate will be above the15 ug/m3 action limit
(correct decision) and 5% of the time the observed estimate will be less than 15  ug/m3.

< If the true estimate is 12.2 ug/m3  and the measurement system has a positive bias of
10%, then 5% of the observed estimates will be greater than 15 ug/m3 and 95% will be
less (correct decision).

< If bias of + 10% is tolerable, any true estimate in the range of 12.2 to 18.8 ug/m3 may
have decision errors greater than 5%.  As an example, for an estimate that truly is 17
ug/m3 and the measurement system has a 10% negative bias, then 50% of the observed
estimates  will be declared to be less than the 15 ug/m3 action limit .

The performance curve is a powerful tool for illustrating the effect uncertainties can have on the
probability of making correct decisions.  For example, larger biases widen the gray zone, while
higher data completeness narrows the gray zone.  Generally, the “steeper” the performance
curves or the narrower the gray zone, the higher the probability of making correct decisions
around the action limit.  Thus, the performance curves can identify those uncertainties that have
the greatest influence on decision errors, and help focus resources to minimize those
uncertainties.

Sources of Uncertainty

Decision errors can be affected by the following variables related to four general categories: the
method, the NAAQS, the sample population or the measurement uncertainty.
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Uncertainty Related to the Method

There is a possibility that both integrated manual methods and continuous methods may be used
to estimate PMc.  One type of integrated method that is considered manual would require the use
of two filter based sampling instruments; a PM10 instrument and a PM2.5 instrument, where PMc
would be estimated by subtracting the PM2.5 estimate from the PM10 estimate.  Using two
instruments creates a potential for greater uncertainty, thus widening the gray zone.  Automated
PMc instruments are available and have the advantage of continuous sampling but these
instruments are still under development and display some bias in certain geographic areas. 
Historically, for each ambient air criteria pollutant, one method type is designated as a federal
reference method (FRM). The manual methods for PM10 and  PM2.5 are currently designated as
FRMs and may need to be used in PMc to provide an estimate of bias for the continuous
methods.

Uncertainty Related to the NAAQS

< Level of standard  - The level of the standard refers to the concentration where the
action limit is set.  For example, if an action limit is set at a concentration close to the
sensitivity of the method, one would expect more potential for decision error.  The
information on the potential concentration ranges of the two standards is included in the
Draft EPA Staff Paper: Review of the National Ambient Air Quality Standards for
Particulate Matter.  Since the standard has not been promulgated, OAQPS used the
max/min of the annual and daily standard identified in the Staff Paper (see Table 1) 

< Form of the standard - If one uses an annual average versus the highest concentration in
a year, there would be more potential for decision error with the single high
concentration value.  Current thinking on the PMc is to propose two standards similar to
the current PM2.5 standard:  a three year annual average value (annual average) and a 3-
year percentile of a 24 hour average value (daily standard). OAQPS developed DQO
scenarios for both forms.

< Percentile for daily standard - different percentiles of the daily standard could affect
decision error. OAQPS looked at 98, 95 and 90 percentiles of a 3-year 24 hour average
but did not notice significant differences in the DQO gray zone, so a 98th percentile was
used.

Uncertainty Related to Sample Population 

Values related to sample population were developed through a review of PM10 and PM2.5 data
available in AQS. Values for each attribute were selected at a conservative but realistic level,
meaning that 90-95% of the sites had values less than (which would narrow the gray zones) the
ones chosen for input to the DQO performance curves.  Population uncertainty inputs, once
selected, are not changed when running DQO performance curves scenarios.

< Seasonality ratio  - the ratio of the highest concentration to the lowest concentration
within a particular time period. A ratio of  7 for PMc was used.

< Population variability - measures the random, day-to-day movement of the true
concentration about the average sine curve. 60% for PMc was used.
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< Autocorrelation - a measurement of the estimated similarity on successive days. Since
there is a possibility that PMc can be measured on a 1 in 6 day sampling frequency, an
autocorrelation of 0 was used.   If continuous instruments are used, everyday sampling
will be viable and some autocorrelation may be incorporated into the DQO.

More details on estimating the population parameters can be found in Appendix A.  Based upon
the review of PMc data in AQS (see Appendix A) and the data from the NERL Intercomparison
study, a set of input parameters to generate the performance curves were selected.  Table 1 provides
the population parameter estimates derived from the AQS data. For the DQO Tool, the second
column (Sel.) identifies the parameter values used to generate the performance curves.  As with
the PM2.5 DQO, the parameters chosen where conservative; producing a “wider gray” zone, but
within realistic values of the data.

Table 1 Estimated particulate matter population parameters.
Quantile Sel. 10 20 30 40 50 60 70 80 90 97.5
PM2.5 Ratio 5.3 1.46 1.63 1.77 2.02 2.14 2.28 2.58 3.03 4.01 5.72
PMc Ratio 14 1.68 2.05 2.32 3.24 3.82 4.42 5.54 8.01 14.3 52.52
PM2.5 CV 0.8 0.35 0.41 0.45 0.51 0.53 0.56 0.6 0.64 0.69 0.8
PMc CV 1 0.4 0.49 0.56 0.66 0.71 0.76 0.84 0.93 1.08 1.39
PM2.5 autocorrelation 0 0 0.06 0.25 0.42 0.45 0.48 0.51 0.59 0.68 0.94
PMc Autocorrelation 0 0 0.13 0.19 0.28 0.31 0.44 0.48 0.51 0.64 0.81
PMc to PM2.5 Ratio 2.25 0.28 0.37 0.46 0.72 0.87 1.04 1.29 1.6 2.22 3.29
Correlation 0 -0.23 -0.05 0.06 0.19 0.25 0.31 0.39 0.46 0.56 0.69

Uncertainty Related to Measurement System  

< Sampling frequency - The DQO tool used  both 1 in 6 day and every day sampling
frequency to accommodate both manual and continuous methods.

< Completeness - 75% was used since it is currently allowed in CFR for particulate matter.
< Measurement bias - 10% bias was used as this appears reasonable for PM2.5 and would

probably remain reasonable.  Table 2 provides an estimate of bias of the various direct
and indirect methods used in the NERL PMC method intercomparison study. Two
estimates of bias are provided; mean bias where positive and negative bias can cancel and
absolute bias (abs) where the absolute value of each individual bias estimate is used and
the mean taken from those individual values. The absolute value bias has been proposed
as the new bias statistic for the gaseous pollutants in CFR and would be proposed to use
as the estimate for PMc.  The statistics used in Table 2 are described in Appendix B. 
Since the mean absolute bias statistic uses absolute values, it does not have a tendency
(negative or positive) associated with it. A sign will be designated by rank ordering the
relative percent differences (with signs) for site values. Calculate the 25th and 75th
percentiles.  The absolute bias would be flagged as positive (+) if both the 25th and 75th
percentiles where positive and negative (-) if both are negative. The mean absolute bias
would not be flagged with a sign if the percentiles were different signs. The mean
absolute bias estimates in Table 2 reflect this process  Of genuine concern for the
personnel trying to develop the PMc quality system is the instrument or standard for use
in determining bias for this network. 
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Table 3- Precision estimates from NERL
Intercomparison Study

monitor number of
complete
runs

precision

all_FRM 76 4.1%
all_R_P_Dichot 47 3.8%
all_Tisch 90 10.1%
all_TEOM 84 6.2%
all_APS 70 19.5%

 Table 2- PMc Bias Estimate with FRM_1 as Truth
All sites PMc Phoenix PMc Gary PMc Riverside PMc

mean bias mean abs
bias

mean bias mean abs
bias

mean bias mean abs
bias

mean bias mean abs bias

APS -45.0% -52.3% -45.4% -45.4% -45.8% -64.2% -43.6% -43.6%
APS_1 -42.4% -54.2% -44.1% -44.1% -37.9% -69.1% -46.3% -46.3%
APS_2 -47.8% -50.1% -47.2% -47.2% -53.7% -59.2% -40.9% -40.9%
Dichot -10.4% -11.5% -18.8% -18.8% -9.4% -12.0% -6.5% -6.8%
Dichot_1 -12.1% -12.5% -18.7% -18.7% -11.1% -12.2% -6.2% -6.6%
Dichot_2 -8.2% -9.8% -15.1% -15.1% -9.3% -12.3% -6.2% -6.5%
Dichot_3 -10.8% -11.9% -19.8% -19.8% -8.8% -11.5% -7.2% -7.4%
FRM -1.0% 5.0% 1.2% 4.0% 0.2% 6.0% -4.1% -4.8%
FRM_2 -4.7% -5.6% -2.5% -3.6% -4.1% -5.9% -6.5% -6.6%
FRM_3 2.1% 4.4% 3.7% +4.2% 4.4% +6.0% -1.7% 3.1%
TEOM -16.9% -22.8% 7.0% 10.5% -31.0% -31.1% -26.2% -26.4%
TEOM_1 -17.8% -25.8% 10.9% +13.8% -32.8% -32.8% -30.0% -30.0%
TEOM_2 -20.8% -23.2% 0.0% 6.8% -32.7% -32.7% -30.6% -30.6%
TEOM_3 -12.1% 19.3% 10.1% +11.0% -27.7% -27.7% -18.0% -18.7%
Tisch 0.4% 9.9% 5.6% 8.4% -8.9% -13.8% 5.1% 7.2%
Tisch_1 -1.8% 10.9% 3.1% +4.7% -15.6% -19.2% 7.8% +8.4%
Tisch_2 2.3% 10.3% 14.1% 16.6% -5.9% 10.2% -0.7% 4.4%
Tisch_3 0.8% 8.3% -0.3% 3.9% -5.3% 12.1% 8.3% +8.6%

< Measurement precision - 10% precision
was used as this appears reasonable for
PM2.5 and would probably remain
reasonable for either a manual or continuous
method. More information on this
uncertainty is being assessed. Table 3
provides estimates of precision from the
NERL Intercomparison study.The statistics
used in Table 3 are described in Appendix
B.

The DQO Software Tools

The DQO tools use performance curves which allows one to model PM 10-2.5 data based on the fixed
population uncertainty assumptions.  Then, the performance curves are changed based on the
inclusion of measurement uncertainty input parameters of sampling frequency, precision, bias and
completeness.  The goal is to keep the gray zone as narrow and the performance curves as steep as
possible.  Two DQO software tools were developed: one, the direct measurement tool, can be used
for continuous instruments or manual instruments that provide PMc material on a single filter; and a
second tool, the integrated tool, when the method requiring a PM10 instrument and a PM2.5
instrument, is used.  The DQO tools allow one to generate multiple performance curve on the same
graph by altering the measurement uncertainty values. By altering these uncertainty values, one can
determine which uncertainty has the most effect on data quality. Figure 2 provides an example graph
derived from the direct DQO tool where only sampling frequency was altered from 1 in 6 day to
everyday.
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Figure 2 Direct DQO Tool Example

Performance Curve Results

Table 4 provides gray zones for PMc at
the NAAQS levels mentioned in the
Draft Staff Paper. This table provides an
example of the changes in the width of
the gray zone in relation to sampling
frequency and sampling method.  For
PMc the gray zone estimates for
columns 3 (1-6 day integrated) and 4
(every day integrated) were developed
from the DQO software where two
instruments (a PM10 and a PM2.5) are
used to derive a PMc concentration. 
The 5th column, identified as “Direct”  is
the gray zone derived either from a

continuous instrument or an instrument collecting a coarse sample on one filter. The reason for the
larger gray zones from the integrated method even when every day sampling occurs are related to the
additive errors of two methods in order to derive a concentration.

Table 4 - PM 10-2.5 Gray Zone Performance Curve Values Relative to Sampling Frequency and Method

Standard NAAQS 
ug/m3

1-6 Day
(Integrated)

Every Day 
(Integrated)

Every Day 
(Direct)

Annual 13 9.9 - 18.0 10.6 - 16.6 11.6 - 14.8

30 22.9 - 41.6 24.4 - 38.3 26.7 - 34.1

Daily 98% 30 17.6 - 41.9 24.2 - 38.7 25.3 - 35.7

75 43.1 - 102.9 59.7 - 95.7 62.6 - 88.5

Conclusions

The DQO software provides user-friendly insights into the effects of uncertainty on decision making
and identifies that the annual standard gray zones are most sensitive to population variability,
sampling frequency, measurement bias, and completeness. The daily standard is sensitive to the
variables listed above in addition to precision. Results from the DQO work are preliminary.  The
information on the form and the level of the standard are draft proposals and are used only to provide
an example of the DQO software’s capability.  The population and measurement uncertainty
parameters have not been agreed upon and may change, thus changing the gray zones. The EPA
National Environmental Research Laboratory is currently conducting intercomparisons on a number
of the PMc manual and continuous instruments.  This information will be used to check the
population and measurement uncertainty assumptions in order to revise the software as needed and to
provide more accurate assessments of the probability for decision errors.
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EXECUTIVE SUMMARY 

 

 Data Quality Objectives (DQOs) are being developed for PMcoarse.  To aid in this 

development, a simulation model has been developed and has been implemented in a software 

tool as was done for PM2.5 (U.S. EPA, 2002).  This report describes the simulation modeling 

process and the parameters that control the process.  The simulation model assumes that PMcoarse 

will be measured using a difference method, namely PM10 - PM2.5, rather than a direct 

measurement.  The parameters in the model describe the ambient behavior of PM2.5, PM10, and 

PMcoarse.  Users must estimate these parameters from ambient data to determine the relevant 

ranges to be explored while developing the DQOs. 

 

 The parameters describing the ambient conditions are as follows:  the degree of 

seasonality of ambient PM2.5 and PMcoarse over the year, the day-to-day variability of ambient 

PM2.5 and PMcoarse, the ratio of the mean level of ambient PMcoarse to the mean level of ambient 

PM2.5, the difference between the times of year when ambient PM2.5 and ambient PMcoarse peak, 

and the correlation between ambient PM2.5 levels and ambient PMcoarse levels.  Using data from 

622 sites in EPA’s Air Quality System (AQS) database, these parameters have been estimated at 

the site level to find the ranges that are likely to be encountered across the nation.  Table ES-1 

summarizes the findings for the 622 sites.  The information contained in Table ES-1 is intended 

to guide users in exploring values relevant for their own development DQO.  Detailed 

descriptions of the parameters in the table may be found in Section 3.0. 

 

Table ES-1.  Estimated particulate matter parameters 
 
Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5 
PM2.5 ratio 1.46 1.63 1.77 1.88 2.02 2.14 2.28 2.58 3.03 4.01 5.72 
PMcoarse ratio 1.68 2.05 2.32 2.73 3.24 3.82 4.42 5.54 8.01 14.34 52.52 
PM2.5 CV 0.35 0.41 0.45 0.48 0.51 0.53 0.56 0.6 0.64 0.69 0.8 
PMcoarse CV 0.4 0.49 0.56 0.61 0.66 0.71 0.76 0.84 0.93 1.08 1.39 
PM2.5 autocorrelation 0 0.06 0.25 0.35 0.42 0.45 0.48 0.51 0.59 0.68 0.94 
PMcoarse autocorrelation 0 0.13 0.19 0.22 0.28 0.31 0.44 0.48 0.51 0.64 0.81 
k 0.28 0.37 0.46 0.56 0.72 0.87 1.04 1.29 1.6 2.22 3.29 
correlation -0.23 -0.05 0.06 0.12 0.19 0.25 0.31 0.39 0.46 0.56 0.69 
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 Note that the PM10 concentrations used to develop Table ES-1 are in “standard 

conditions,” meaning that the volume used in the calculation of the concentration was adjusted to 

the volume corresponding to 1 ATM and 25 C.  The tool generally allows a larger range of 

values than is indicated by Table ES-1, in part to allow for changes to the reporting units. 
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Technical Report 

 
on 

 
Estimating Parameters for the PMCOARSE DQO Tool 

 
 
1.0  INTRODUCTION 

 

The EPA guidelines for the Data Quality Objectives (DQO) Process (U.S. EPA, 2000) 

specify a seven-step procedure for creating DQOs.  For the remainder of this document 

(QA/G-4), it is assumed that the reader is familiar with the procedure outlined in QA/G-4 and 

with using decision performance curves to evaluate the utility of decision rules.  The purpose of 

the procedure outlined in QA/G-4 is to create DQOs that will assure the collection of data that 

are not only relevant to questions of interest, but also of high enough quality to ensure the ability 

to answer those questions.  In the current context, users are interested in answering several 

questions including, but not limited to: 

 

• What action levels (the National Ambient Air Quality Standards, NAAQS, or local 

standards) one should specify in order to limit ambient PMcoarse levels to a suitable 

level? 

• What levels of sampling frequency, data completeness, measurement bias, and vendor 

measurement error are needed to detect the concentrations efficiently? 

 

To help users answer these questions, a DQO tool has been developed to quantify the uncertainty 

associated with policy decisions.  Use of this tool requires users to perform five steps: 

 

 1.  Obtain particulate matter data.  (Historical data available in AQS is sufficient.) 

 2.  Estimate parameters that describe important characteristics of these data to be 

input into the DQO tool. 

 3.  Determine other values relevant to the process, such as acceptable bias in 

samplers, to be input into the DQO tool. 
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 4.  Enter the values from Steps 2 and 3 into the DQO tool and initiate the 

calculations. 

 5.  Interpret the decision performance curves the DQO tool produces. 

 

In this document, issues related to each of these steps are addressed.  However, the main 

focus is on the calculations necessary to complete Step 2 and the research necessary to complete 

Step 3.  In addition, this document gives information on the inner workings of the DQO tool in 

order to allow better understanding of the decision performance curves it produces. 

 

Step 1.  Obtaining Particulate Matter Data 

 

 Before obtaining PM data for development of DQOs, users need to give careful 

consideration to the boundaries of the study region of interest.  After defining a region of 

interest, relevant data may be downloaded from the EPA’s AQS database (see 

http://www.epa.gov/ttn/airs/airsaqs/index.htm). 

 

Steps 2 and 3.  Estimating Parameters and Determining Other Important Values 

 

 Section 3.0 of this document explains methods for determining inputs to be used by the 

DQO tool to produce useful decision performance curves.  The relevant inputs are simple to 

specify.  These inputs fall into three categories:  those that describe inherent properties of 

ambient particulate matter, those that describe properties of the sampler, and those that describe 

the NAAQS and the quality of the decision.  They include: 

 

Properties of ambient particulate matter: 

 

• The degree of seasonality of ambient PM2.5 and PMcoarse over the year. 

• The day-to-day variability of ambient PM2.5 and PMcoarse. 

• The ratio of the mean level of ambient PMcoarse to the mean level of ambient PM2.5. 

• The difference between the times of year when ambient PM2.5 and ambient PMcoarse 

peak. 
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• The correlation between ambient PM2.5 levels and ambient PMcoarse levels. 

 

Properties of the sampler: 

 

• The amount of random measurement error at the samplers. 

• The amount of bias introduced by the samplers. 

• The quarterly completeness of PM2.5 and PM10 readings. 

• The number of days between adjacent readings. 

 

Quantities relevant to the NAAQS and the quality of the decision: 

 

• Acceptable Type I and Type II error (defined in Section 3.7). 

• The percentile for PMcoarse daily standard. 

• The daily standard. 

• The annual standard. 

 

 Obtaining information from the DQO tool requires estimates for the first group of 

parameters.  Guidance for estimating these values is provided in Section 3.0 of this document.  

Guidance for estimating the quantities that describe properties of the sampler may be obtained 

from national QA reports for the PM10 and PM2.5 network or operator experience.  Guidance for 

specifying values for Type I error and Type II error can be obtained from EPA QA/G-4.  This 

document specifies a guideline of 1 percent as the starting point for determining acceptable 

levels of Type I and Type II error.  The remaining quantities are specified at the discretion of the 

user and/or the yet to be determined NAAQS for PMcoarse. 

 

 Rather than using the data to calculate a single set of parameter estimates to be input into 

the DQO tool, users should attempt to determine a range of plausible values for the parameters.  

For instance, if the chosen region of interest is the entire nation, the parameters should be 

estimated for individual sites across the nation and consideration should be given to the range of 

values that parameters take at different sites.  This strategy of calculating parameter estimates 

separately for each site within the region of interest can be applied whenever multiple sites exist 
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in the region of interest.  In fact, the region of interest should be expanded to include several 

sites.  At the very least, users should perform the analysis multiple times using not only the 

estimated values, but also other parameter values close to the estimated values that could be 

considered worse (e.g., less frequent data collection or larger measurement bias). 

 

Steps 4 and 5:  Running the DQO Tool and Interpreting the Results 

 

 The DQO tool is simple to operate – users enter information obtained in Steps 2 and 3 

into the graphical interface and click a radio button to initiate the calculations.  (Details of the 

operation of the DQO tool may be found in the “User’s Guide for DQO Companion for 

PMcoarse.”)  While not strictly necessary, an understanding of the methods used to calculate the 

decision performance curves may aid the user with their interpretation.  Section 2.0 and 

Appendix A explain the inner workings of the DQO tool. 

 

 The remainder of this document gives technical details on the DQO tool and on 

estimation techniques users can employ to determine inputs to the tool.  Users who are familiar 

with the DQO tool for PM2.5 (U.S. EPA, 2002) and are uninterested in the details of simulation 

may skip to Section 3.0.  Users who are unfamiliar with decision performance curves and their 

interpretation may find that understanding the methods used by the DQO tool help with 

understanding the output the tool produces.  Those users are encouraged to read Section 2.0.  

Users interested in the technical details of the statistical model underlying the simulations 

described in Section 2.0 are referred to Appendix A. 

 

 

2.0  SIMULATION 

 

 This section describes the methods the DQO tool uses to calculate decision performance 

curves after being given inputs from the user.  All of the calculations and estimation procedures 

described in this section are performed by the DQO tool and require no user interaction. 
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 The DQO tool uses inputs that describe the physical state of nature and the properties of 

the samplers to simulate different scenarios of observed readings.  In this way, simulation acts as 

a bridge between decision maker inputs and decision maker/data user requirements for data 

quality.  The DQO tool bridges the gap between the user inputs and the data quality requirements 

in three steps: 

 

Step 1. The DQO tool uses the inputted values to simulate a physical process that mimics 

the true behavior of particulate matter. 

Step 2. The DQO tool adjusts the simulated particulate matter values from Step 1 to 

account for bias, measurement error, and missing data in order to mimic data 

collection. 

Step 3. The DQO tool calculates decision performance curves and gray zones 

corresponding to the simulated data obtained in Step 2. 

 

 To make this process work, the simulation model needs to mimic the major properties of 

the physical process.  The values of these properties (estimated using the techniques described in 

Section 3.0) are input into the simulator by the user.  These properties include: 

 

• The degree of seasonality of ambient PM2.5 and PMcoarse over the year.  The 

simulator assumes that typical PM2.5, PMcoarse, and PM10 levels follow sinusoidal 

patterns over the course of a year.  The ratio of the peak of the seasonal level to the 

trough of the seasonal level is specified by the user. 

• The day-to-day variability of ambient PM2.5 and PMcoarse.  Both of these types of 

particulate matter exhibit random variability around their seasonal mean sinusoidal 

behavior. 

• The ratio of the annual mean level of ambient PMcoarse to the annual mean level 

of ambient PM2.5. 

• The difference in months between the times of year when ambient PM2.5 and 

ambient PMcoarse peak. 
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• The correlation between ambient PM2.5 and ambient PMcoarse.  Levels of PM2.5 

and PMcoarse tend to vary together in many areas.  The degree to which their ambient 

levels vary together is an important characteristic to simulate. 

• The amount of random measurement error at the samplers. 

• The amount of bias introduced by the samplers. 

 

Additionally, there are known decision-maker constraints to the process that affect the output, 

including: 

 

• The quarterly completeness of PM2.5 and PM10 readings.  Current EPA guidelines 

for data quality stipulate that no more than 25 percent of data readings may be 

missing during each quarter when calculating summary statistics for PM2.5 

(40 CFR 58).  The DQO tool allows different proportions of missing data in order to 

assess its impact on data quality. 

• The number of days between adjacent readings.  Particulate matter readings are 

often not available on a daily basis, but instead on a “1 in m days” basis.  The DQO 

tool accounts for this type of data collection. 

 

Once satisfactory values for these variables have been determined, the user must also specify a 

percentile and daily standard to be monitored as well as acceptable levels of Type I and Type II 

error (explained in Sections 3.7 through 3.9). 

 

 The DQO tool calculates the probability of making NAAQS-like non-attainment 

decisions for both an annual and a daily standard as a function of the true 3-year values.  The 

DQO tool calculates these probabilities of interest via simulation.  In order to create the decision 

performance curves, the simulator first creates 5,000 instances of PM2.5 and PM10 data.  Each of 

these 5,000 instances contains data covering a 3-year span.  These 5,000 sets of three years’ 

worth of data are depicted within the rectangle in the upper left corner of Figure 2-1. 

 

 First, consider only one of these 5,000 instances (the first instance is singled out in the 

figure).  Once the data for this instance are generated using the user specified parameters, both 
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the PM2.5 and PM10 series are scaled (multiplied by a constant) so that a value of 1 unit 

corresponds to the percentile for the daily standard for 2.510coarse PMPMPM −=  for the simulated 

truth.  The figure depicts this scaling when the percentile of interest is the 98th percentile. 

 

 
 

Figure 2-1.  Scheme for simulation of data and calculation of percentiles. 

 

 

 Next, for each quarter of each year the completeness and “1 in m days” sampling 

restrictions are applied, and measurement error and bias are introduced into the observations to 

Simulation 1: PM2.5 and PM10 

Simulation 2: PM2.5 and PM10 

Simulation 1000: PM2.5 and PM10 

. . . 

Low Bias High Bias 

0.965 0.928 0.883 1.118 1.127 1.111 

0.925 1.119 

Rescale so that 
98th percentile of 

PMcoarse is 1. 

Apply sampling 
scheme and add bias 

and measurement 
error. 

Find 98th 
percentile for 

each year. 

Average 98th percentiles across years. 

To find the observed 98th percentile for this simulation when the true 98th percentile is x, multiply these numbers by x. 
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account for data collection conditions.  Bias is applied in a “best case” and “worst case” 

scenario – in one instance, PM2.5 readings are biased up while PM10 readings are biased down 

resulting in underestimation of PMcoarse levels; in the other instance, PM2.5 readings are biased 

down while PM10 readings are biased up resulting in overestimation of PMcoarse levels.  The 

result is that the three years of simulated data are turned into two sets of three years of data:  

three years of the high bias case and three years of the low bias case. 

 

 For now, consider only one of these bias cases (although both cases are depicted in the 

figure).  In this bias case, the DQO tool uses the simulated data to calculate the level of PMcoarse 

that corresponds to the percentile for the daily standard for each of the three years of data.  These 

three levels (one for each year) will be averaged to get a mean annual percentile level that 

corresponds to the percentile of interest.  This process is repeated for the other bias case, and the 

entire process is repeated 5,000 times to get 10,000 estimates of the PMcoarse value that 

corresponds to the percentile of interest.  Those 10,000 estimates will consist of 5,000 estimates 

corresponding to the low bias case and 5,000 estimates corresponding to the high bias case.  

Details of the mathematical models used for the simulation described are found in Appendix A. 

 

 Once the DQO tool has calculated these numbers, it can calculate the probability of an 

observed average annual percentile exceeding the daily standard.  Suppose that we are interested 

in the probability that the observed 98th percentile exceeds a 35 J�P3 standard.  Suppose also 

that the true 98th percentile is 20 J�P3.  Recall that the PMcoarse levels simulated are scaled so 

that the true PMcoarse level corresponding to the 98th percentile is 1 unit in the unbiased case.  

Since we are interested in the case where the true 98th percentile is 20 g/m3, we can multiply all 

of the 10,000 estimates we obtained by 20.  Then, to find out the probability that the 98th 

percentile exceeds 35 g/m3, the DQO tool calculates the proportion of the 5,000 simulations in 

each of the high and low bias cases that exceed 35 J�P3.  These proportions are the probabilities 

that are plotted as decision performance curves when this evaluation is performed for many 

different possible true 98th percentile values.  Two decision performance curves are plotted:  one 

for the high bias case and one for the low bias case.  Figure 2-2 shows two of the decision 

performance curves described. 
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Figure 2-2.  Example decision performance curves. 
 

 

 Once the decision performance curves have been plotted, horizontal lines are added to the 

plots at the levels of acceptable Type I and Type II errors as shown in Figure 2-2 (the lines are 

added at 10 percent Type I error and 10 percent Type II error in Figure 2-2).  From the 

intersection of these lines with the decision performance curves, the DQO tool calculates the 

gray zone.  The gray zone is the range of true values over which Type I and Type II errors will 

be unacceptably large.  In Figure 2, the gray zone is from 18.5 to 50.5.  The DQO tool can help 

determine what data collection quality assurance measures are necessary to reduce the gray zone 

to a desired size. 

 

 Note that, so far, we have only addressed how the simulator calculates the probability of 

an observed percentile of daily readings exceeding a standard.  The simulator also creates 

decision performance curves related to the attainment of an annual standard.  To calculate the 
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probability that the annual mean exceeds the standard, the PM2.5 and PM10 simulations are 

rescaled so that instead of the fixed percentile (the 98th percentile, in this example) of the 

PMcoarse series being 1 unit, the mean of the true PMcoarse series is 1 unit.  Then, the rest of the 

calculations are performed in the same way as before – bias and measurement error are added, 

and decision performance curves are calculated using the 5,000 replications from each of the 

high and low bias cases.  The result is a second set of decision performance curves that show the 

probability of the observed mean of PMcoarse exceeding the annual standard for several true 

values of the mean of PMcoarse. 

 

3.0  PARAMETER ESTIMATION TECHNIQUES 

 

To use the PMcoarse DQO tool, users must estimate the parameters that describe ambient 

particulate matter properties for the specific geographic region of interest.  These estimates are 

then input into the PMcoarse DQO tool to create relevant decision performance curves.  Sections 

3.1 through 3.6 explain the parameters that describe true ambient particulate matter properties.  

These sections describe how to estimate the parameters from data collected from the region of 

interest and also describe what these parameters measure.  Sections 3.7 through 3.13 explain the 

parameters describing properties of the sampler and the parameters describing decision rules and 

acceptable error rates. 

 

 PM2.5 and PM10 data for most areas can be obtained from the EPA’s AQS database (see 

http://www.epa.gov/ttn/airs/airsaqs/index.htm).  Both sets of data are needed for the region of 

interest.  PMcoarse values are obtained by subtracting PM2.5 from PM10 on a day-by-day basis.  

Note that calculating PMcoarse values in this way can result in some negative PMcoarse values if 

PM10 readings fall below PM2.5 readings at some time points (this situation is possible with 

biased samplers).  It is assumed that whenever this occurs, the PMcoarse value should be set to 

zero for that day.  Once the data have been obtained and PMcoarse values have been calculated, 

calculation of the DQO parameters to be input into the DQO tool can be performed as outlined in 

the following sections. 
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 In addition to the parameter descriptions and explanations of how to estimate them, the 

following sections contain summaries of values found for each parameter across several sites in 

the United States.  These summaries were calculated using data downloaded from the AIRS/AQS 

database.  All PM10 measurements used in these calculations are in standard units, meaning that 

the volume used in calculating the concentrations was adjusted to 1 ATM and 25 C.  The 

parameter value summaries were created for use in developing national level DQOs and are also 

intended as a guide for users estimating their own parameters to be input into the model. 

 

3.1  Seasonality Ratio 

 

 The ratio parameter is a measure of the degree of seasonality in the data.  It is the ratio of 

the high point to the low point on the sine curve that describes the average behavior of PM.  This 

ratio must be estimated separately for the PM2.5 and PMcoarse series.  With at least one year of 

data, the ratio can be estimated by calculating the means for each month and dividing the highest 

value by the lowest value.  With more than one year of data, each month of data is averaged, 

even though the individual values may come from different years.  The ratio of the maximum 

monthly average to the minimum monthly average is an estimate of the true ratio parameter.  

Table 3-1 shows several quantiles of the estimated ratio parameter for PM2.5 and PMcoarse across 

502 sites in the United States.  For ease of use, the values in this table are repeated in Section 4.0. 

 

Table 3-1.  Quantiles of the estimated seasonality ratio parameters 

 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5 

PM2.5 ratio 1.46 1.63 1.77 1.88 2.02 2.14 2.28 2.58 3.03 4.01 5.72 

PMcoarse ratio 1.68 2.05 2.32 2.73 3.24 3.82 4.42 5.54 8.01 14.34 52.52 

 

 

3.2  Population Coefficient of Variation (CV) 

 

 This parameter measures the amount of random, day-to-day movement of the true 

concentration around the average sine curve.  Again, the population coefficient of variation (CV) 

parameter is estimated separately for the PM2.5 and PMcoarse series.  This parameter is slightly 



12 

more difficult to estimate than the ratio parameter.  First, a sequence of the natural logarithms of 

the concentrations is generated from measurements that were taken every 6th day (deleting if 

needed).  Next, a new sequence of numbers is generated equal to the differences of successive 

pairs in the sequence of the logs.  Every other term in this sequence is removed.  The standard 

deviation of this set of numbers is calculated and referred to as S6.  An estimate for the 

population CV is ( )( )126exp 2 −S .  Table 3-2 shows several quantiles of the estimated CV 

parameter for both PM2.5 and PMcoarse across several sites in the United States.  For ease of use, 

the values in this table are repeated in Section 4.0. 

 

Table 3-2.  Quantiles of the estimated population CV parameter 
 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5 
PM2.5 CV 0.35 0.41 0.45 0.48 0.51 0.53 0.56 0.6 0.64 0.69 0.8 
PMcoarse CV 0.4 0.49 0.56 0.61 0.66 0.71 0.76 0.84 0.93 1.08 1.39 

 

 

3.3  Autocorrelation 

 

Another parameter describing the natural variability of the true concentrations is 

autocorrelation.  Like the preceding variables, the autocorrelation is estimated separately for the 

PM2.5 and PMcoarse series.  This is a measurement of the similarity between successive days.  

Estimating autocorrelation is harder than estimating the population CV.  Without daily 

measurements, the value of 0 should be used.  Realistically, 0 is the most conservative case and 

can always be used.  Assuming daily measurements are available, let S6 be computed as in 

Section 3.2 (the standard deviation computed from differences of the logs from every 6th day 

measurements).  Let S1 be computed in the same manner using differences of logs from daily 

measurements.  If S6 > S1, then there is some autocorrelation, and it is estimated with 

( ) 222 616 SSS − .  This formula tends to slightly overestimate the true amount of autocorrelation 

present in the data.  Since it is better to underestimate this parameter (to make the results more 

conservative), the user may want to multiply the estimate by 0.85.  Table 3-3 shows several 

quantiles of the estimated autocorrelation for both PM2.5 and PMcoarse across several sites in the 
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United States with daily measurements.  The estimates reported in Table 3-3 below were not 

multiplied by 0.85.  For ease of use, the values in this table are repeated in Section 4.0. 

 

Table 3-3.  Quantiles of the estimated autocorrelation parameters 

 
Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5 

PM2.5 Autocorrelation 0 0.06 0.25 0.35 0.42 0.45 0.48 0.51 0.59 0.68 0.94 

PMcoarse Autocorrelation 0 0.13 0.19 0.22 0.28 0.31 0.44 0.48 0.51 0.64 0.81 

 

 

3.4  PMcoarse to PM2.5 Ratio 

 

 This parameter is used for scaling within the simulation model.  Its estimation is very 

simple.  First, let M1 be the average of all of the PMcoarse values over the full time period 

available.  Let M2 be the same average for the PM2.5 data.  Then, the ratio is estimated with 

M1/M2.  Table 3-4 shows several quantiles of the estimated value of this ratio across several 

sites in the United States.  For ease of use, the values in this table are repeated in Section 4.0. 

 

Table 3-4.  Quantiles of the estimated PMcoarse to PM2.5 ratio parameters 
 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5 

K 0.28 0.37 0.46 0.56 0.72 0.87 1.04 1.29 1.6 2.22 3.29 

 

 

3.5  Phase Shift Between PM2.5 and PMcoarse Cycles 

 

 This parameter controls the difference in time between the peak of PM2.5 in a year and the 

peak of PMcoarse in a year.  The units of the parameter are “ months.”   This parameter is estimated 

by first calculating the mean PM2.5 and PMcoarse levels for each month in the dataset for a site.  

Next, the month with the highest mean level is found for each series.  Subtracting the number of 

the month with the highest average PMcoarse level from the number of the month with the highest 

average PM2.5 level yields the estimate.  For instance, if the month in the dataset with the highest 

average PM2.5 level is August and the month in the dataset with the highest average PMcoarse level 
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is June, then the estimate is +2 months.  Since the sine wave is cyclical, one may add or 

subtract 12 from the value obtained without changing the sine wave produced.  In other words, if 

PMcoarse peaks in December and PM2.5 peaks in January, the estimate is 1 - 12 = -11.  This value 

is equivalent to a value of 1.  For consistency, this document reports equivalent values 

between -5 and 6.  Use of equivalent values between -5 and 6 is not required in the software tool.  

The estimated values for the shift parameter across 622 sites in the United States are presented in 

the following bar chart, Figure 3-1. 

 

 
Figure 3-1.  Bar chart of the shift parameter. 
 

 

3.6  Correlation Between PM2.5 and PMcoarse 

 

 This parameter estimates the correlation between the two series.  The estimation of this 

parameter can be affected by autocorrelation and seasonality, so the calculation is quite complex.  

First, consider only the PM2.5 series.  The series is subsetted so that it includes every 6th day 

measurements (deleting if needed), and the natural log of each term is taken.  Next, a new 

sequence of numbers is created with the differences of successive pairs in the sequence of the 

logs.  Every other term in this sequence is removed.  This result is saved and the corresponding 

calculations for the PMcoarse series are performed.  A single series is formed by adding the 
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corresponding elements of these two series.  Let SS = the standard deviation of this set of 

numbers.  In addition, let S625 and S6coarse be the values calculated in Section 3.2 for the PM2.5 

and PMcoarse series, respectively.  The correlation is estimated by 

( )[ ] ( )2
25

22
25

22 66266 SSSSSS coarsecoarse ××+− .  Table 3-5 shows several quantiles of the estimated 

value of the correlation between the two series across several sites in the United States.  For ease 

of use, the values in this table are repeated in Section 4.0. 

 

Table 3-5.  Quantiles of the estimated PM2.5 to PMcoarse correlation parameters 
 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5 
Correlation -0.23 -0.05 0.06 0.12 0.19 0.25 0.31 0.39 0.46 0.56 0.69 

 

 

3.7  Type I and Type II Error 

 

 Type I error and Type II error describe the probability of making the wrong decision 

under a specified set of conditions.  Type I error is the probability of observing a percentile (or 

annual mean) above the specified daily (or annual) standard when the true ambient level (free 

from measurement error and bias) is below the standard.  EPA QA/G-4 recommends starting 

with a Type I error rate of 1 percent and making adjustments as necessary.  In the tool, both 

parameters are restricted to be at least 1 percent, as otherwise more simulations are needed to get 

robust results.  See Step 6 of EPA QA/G-4 for additional guidance. 

 

 Type II error is the probability of making the opposite mistake:  observing a value below 

the action limit when the true ambient level (free from measurement error and bias) is above the 

action limit.  Since the curves show the probability of observing a value above the action limit, 

the value of 1 minus the Type II error is shown on the y-axis of the graphs.  EPA QA/G-4 

recommends starting with a Type II error rate of 1 percent and making adjustments as necessary.  

This parameter is also restricted to be at least 1 percent by the tool.  See Step 6 of EPA QA/G-4 

for additional guidance. 
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3.8  Annual Standard 

 

 The annual standard is the yet to be determined level of the annual NAAQS for PMcoarse.  

It is assumed that the standard will be based on the mean of three consecutive annual means. 

 

3.9  Daily Standard 

 

 The daily standard is the yet to be determined NAAQS daily standard for PMcoarse.  It is 

assumed that the standard will be based on a calculation similar to the one used for PM2.5; 

namely, on the mean of the annual percentiles from three consecutive years.  Further, it is 

assumed that the percentiles for each year will be calculated as the 98th percentile is for PM2.5. 

 

3.10  Percentile for the Daily Standard 

 

 The percentile for the Daily Standard is the yet to be determined percentile basis for the 

NAAQS or local daily standard.  Under the assumptions above, the simulator will create data 

with the true percentile of PMcoarse levels equal to the percentile indicated.  Then, after 

incorporating bias and measurement error, the DQO tool will calculate the probability of the 

observed value of this percentile of PMcoarse levels exceeding the daily standard. 

 

3.11  1 in m Day Sampling 

 

 This is the sampling frequency.  The value of m must be an integer from 1 to 12 and 

denotes the number of days between successive samples.  1, 3, 6, and 12 are the most common 

values.  As an example, setting m to 6 produces approximately 15 sampling days each quarter.  It 

is assumed that the PM2.5 and PM10 measurements are on the same schedule.  Of course, it is 

possible to have one monitored more frequently than the other, but only the data from the 

common sampling times are used for NAAQS decisions. 
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3.12  Completeness 

 

 Completeness is the minimum acceptable percentage of the data that is intended to be 

collected.  Completeness is included in the DQO tool to mimic random occurrences of data loss, 

such as a power outage on a scheduled sampling day.  The criterion is applied quarterly.  Thus, if 

completeness is set to 0.75, the DQO tool removes 25 percent of the data from each quarter of 

each year.  The completeness requirements are independently applied to the PM10 and PM2.5 

data.  If a direct requirement on the PMcoarse completeness is desired, then the PM2.5 

completeness should be set to 1 and the PM10 completeness to the desired level for PMcoarse. 

 

3.13  Bias 

 

 The bias input is the maximum allowable measurement bias as a proportion of the truth 

for PM2.5 and PM10.  Bias is a consistent measurement error – a tendency to always either 

overestimate or underestimate the truth.  For the DQO tool, bias is represented as a proportion 

error.  If a 10 percent bias is desired in the system, enter 0.1 for the bias term.  The DQO tool 

accepts only positive values for quantifying bias, but both positive and negative biases are 

simulated. 

 

3.14  Measurement Coefficient of Variation (CV) 

 

 Measurement coefficient of variation (CV) quantifies the size of the random component 

of the measurement error.  It is expressed as a proportion of truth for both PM2.5 and PM10.  The 

random component of the measurement error is assumed to follow a normal distribution with a 

mean of 0 and a standard deviation that is proportional to the true value (for the given day).  

Enter 0.1 for 10 percent. 
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4.0  DISTRIBUTION OF ESTIMATES ACROSS THE UNITED STATES 

 

 The quantiles of the parameters estimated in the previous sections are reprinted in 

Table 4-1.  These numbers are intended to guide users by demonstrating the range of values 

found across the nation.  Users may consider values outside of the ranges shown here to account 

for the fact that the PM10 data available for our analysis was in standard units.  In total, 622 sites 

across the United States were examined (refer to Figure 4-1).  Sites with fewer than three 

observations for any single month were not considered.  Also, sites where there did not exist 

more than one set of two consecutive days of data were removed for autocorrelation calculations 

since autocorrelation could not be calculated for those sites.  For all parameters except the 

autocorrelation parameters, quantiles were calculated using 502 sites.  The autocorrelation 

parameters were calculated using 65 sites. 

 

 
Figure 4-1.  Number of sites reporting PM10 and PM2.5 readings by state. 
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Table 4-1.  Estimated particulate matter parameters 
 

Quantile 2.5 10 20 30 40 50 60 70 80 90 97.5 
PM2.5 ratio 1.46 1.63 1.77 1.88 2.02 2.14 2.28 2.58 3.03 4.01 5.72 
PMcoarse ratio 1.68 2.05 2.32 2.73 3.24 3.82 4.42 5.54 8.01 14.34 52.52 
PM2.5 CV 0.35 0.41 0.45 0.48 0.51 0.53 0.56 0.6 0.64 0.69 0.8 
PMcoarse CV 0.4 0.49 0.56 0.61 0.66 0.71 0.76 0.84 0.93 1.08 1.39 
PM2.5 autocorrelation 0 0.06 0.25 0.35 0.42 0.45 0.48 0.51 0.59 0.68 0.94 
PMcoarse autocorrelation 0 0.13 0.19 0.22 0.28 0.31 0.44 0.48 0.51 0.64 0.81 
K 0.28 0.37 0.46 0.56 0.72 0.87 1.04 1.29 1.6 2.22 3.29 
correlation -0.23 -0.05 0.06 0.12 0.19 0.25 0.31 0.39 0.46 0.56 0.69 

 

 

5.0  MODEL ASSUMPTIONS 

 

 In addition to several assumptions about the functional form of the PM model 

(e.g., sinusoidal annual patterns), the DQO tool makes two other important assumptions.  First, 

the DQO tool assumes that the PM2.5, PMcoarse, and PM10 readings are consistent from year to 

year.  Second, the DQO tool assumes that the simulated values are multiplicatively scalable to 

higher mean values. 

 

5.1  Year-to-Year Consistency 

 

 The assumption of year-to-year consistency means that values of the parameters are the 

same across all three years simulated.  This assumption is placed in the model for simplicity – it 

is not meant to model the true behavior of PM concentrations over long periods of time.  

However, this assumption provides needed stability for the simulator and allows for accurate 

computation of percentiles. 

 

5.2  Scalability of PM Realizations 

 

 The DQO tool is designed to evaluate the probability of an observed percentile (or the 

observed annual mean) exceeding an action limit for several different possible true values of the 

PM process.  However, the simulator does not resimulate all of the data every time the true value 
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is altered.  Instead, the DQO tool makes the assumption that increasing the mean level of one 

type of particulate matter increases the mean level of other types of particulate matter 

proportionately.  Each of the parameters described in Sections 3.1 through 3.6 are estimated 

under this assumption. 

 

 For example, Section 3.4 describes the parameter controlling the ratio between the means 

of the PMcoarse and PM2.5 series.  If this parameter is set to 0.5, the mean level of the PMcoarse 

series is always assumed to be half the mean level of the PM2.5 series regardless of the value the 

mean level of the PM2.5 series takes for the site.  This assumption may not be entirely valid – as 

mean levels of PM2.5 increase, mean levels of PMcoarse may not increase proportionately.  If it is 

felt that this assumption will not be met, then a “ worst”  case value should be used.  What 

constitutes the worst case for any given parameter may depend on the choices for the other 

parameters.  It is recommended that a range of different values be used wherever it is not clear 

what constitutes a worst case. 

 

 

6.0  CONCLUSIONS AND RECOMMENDATIONS 

 

 Users of the DQO tool should keep in mind that it simulates data that follow a somewhat 

idealized pattern that may not correspond exactly to reality.  It is intended to guide users in 

making policy decisions, not as a forecasting tool. 

 

 It is also recommend that users take time to become familiar with the data (possibly 

downloaded from AQS) before estimating parameters to be input into the DQO tool.  If the data 

are of low quality or very incomplete, more advanced statistical modeling techniques may be 

desirable for estimating the values to be input into the simulator. 
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APPENDIX A:  STATISTICAL MODEL 

 

 This appendix gives details of the mathematical models used for the simulation of 

PMcoarse observations in the DQO tool.  At a single site, the statistical model used by the 

simulator assumes that particulate matter concentrations deviate randomly from sinusoidal 

curves that complete one full cycle each year.  First consider the sine curves that describe the 

average behavior of PM2.5 and PMcoarse over the course of a year.  These two series are described 

by the equations 
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where t is a time variable,  controls the mean of the PM2.5 series, k controls the mean of the 

PMcoarse series, 2.5 and c control the amplitudes of the series, and s controls the offset between 

the peak of the PM2.5 and PMcoarse series.  These two equations represent sine curves that 

complete a single cycle between t = 0 and t = 365.  In each case, the expression inside the 

brackets represents a sine wave that oscillates around a value of 1.  The multiplicative constants 

outside the bracketed expressions scale the series so that the true center of oscillation is  for the 

PM2.5 series and k  for the PMcoarse series.  In both cases, the amplitude of the sine wave is 

controlled by a parameter .  This parameter is a function of the ratio variable described in 

Section 3.1.  Specifically, )1 ratio/()1 ratio( +−=β .  The expression for the mean behavior of 

PMcoarse (Eq. 2) has an additional term, 2 s/12, inside the sine function that allows the peak level 

of PMcoarse to occur s months before the peak of PM2.5.  Negative values are permissible for s 

allowing the peak for PMcoarse to occur after that of PM2.5.  A sinusoidal curve representing the 

non-random component of PM10 may be calculated by adding the two expressions:  

)()()( 5.210 ttt cµµµ += . 
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 The daily deviations of particulate matter observations from these sine waves are 

introduced through multiplication of the daily sine wave value by a daily random component.  

The characteristics of this random component are designed to mimic properties exhibited by true 

PM2.5, PM10, and PMcoarse observations.  For instance, the day-to-day values of PM2.5 levels can 

be correlated with the day-to-day values of PMcoarse levels, and the simulator allows 

incorporation of this between-series correlation in the random component.  In addition to the 

random multiplicative component, the simulator allows for input of measurement error and bias 

to account for effects resulting from inaccurate data collection. 

 

 The following sections describe the elements of the full model in more detail.  First, the 

multiplicative random component is described.  We use a log-normal distribution (Section A.1) 

that allows for correlation between PM2.5 and PMcoarse.  In addition to correlation, we incorporate 

autocorrelation within each series into the calculations.  These two types of correlation, 

correlation between the series and autocorrelation within each series, are described in detail in 

Sections A.2 and A.3.  Finally, bias and measurement error are discussed in Section A.4 

 

A.1  Log-normal Distribution 

 

 The observations of particulate matter recorded by samplers do not exactly follow the 

sinusoidal curves described in Equations 1 and 2.  A certain amount of random error, along with 

measurement error and bias, contribute to the observed readings of particulate matter 

concentrations.  The true observed values at time t for PM2.5 and PM10 can be represented by 

 

          ))(1()1()()()(PM 5.25.25.25.25.22.5 ηµ txBtztt +×+××=     (Eq. 3) 

and 

  [ ] ))(1()1()()()()()(PM 1010105.25.210 ηµµ txBtzttztt cc +×+××+×=   (Eq. 4) 

 

where z2.5, zc, x2.5, and x10 are random components; B2.5 and B10 are bias terms; and 2.5 and 10 

are measurement coefficients of variation.  These two equations look confusing, but they make 

intuitive sense when broken down into their constituent pieces.  First, consider Equation 3, the 

observation equation for PM2.5 on day t. 
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• The first term, 2.5(t) is the sinusoidal curve from Equation 1 that represents the 

average behavior of PM2.5 over the course of a year (see Eq. 1). 

• The next term, z2.5(t) is the random component that allows the true PM2.5 

concentration to deviate from the underlying sinusoidal curve.  Since this random 

component is multiplied by the mean value, we restrict it to have a mean of 1.  This 

restriction means that the average behavior of the series follows the sine curve. 

• The term (1 + B2.5) introduces bias into the measurement process.  A recorder that 

systematically adds or subtracts from the true value of PM2.5 when reporting the 

observed value is biased.  A recorder that does not systematically add or subtract 

anything from the true value of PM2.5 is unbiased and will have B2.5 = 0.  In that case, 

the term 1+B2.5 is equal to 1 and has no effect on the PM2.5 reading recorded. 

• The final term, (1 + x2.5(t) 2.5) allows measurement error to be incorporated into the 

system.  The value 2.5 is called the coefficient of variation and is calculated as the 

standard deviation of the random measurement errors divided by their mean.  In this 

expression, x2.5(t) is a random component that takes a different value at each time 

step. 

 

 Equation 4 represents the observation equation for PM10 and is almost identical to 

Equation 3.  In Equation 4, the two added terms inside the square brackets are the sum of the 

means and random components for PM2.5 and PMcoarse.  The final two terms are bias and 

measurement error terms corresponding to the PM10 series.  The remainder of this subsection and 

the next two subsections discuss the choice of statistical distribution for z(t) and its construction.  

Discussion of the bias and measurement error terms in each series can be found in Section A.4. 

 

 Equations 3 and 4 indicate that the random deviations of the series about the average sine 

curve will be introduced through a multiplicative factor z(t).  Using a multiplicative factor 

(instead of an additive one like in linear regression) means that when the average level of the 

series increases, the variability in the observations increases as well.  As an example, consider 

one year’s worth of PM2.5 readings from a single sampler as depicted in Figure A-1.  From this 

figure, it is apparent that at this location the variability in the observations increases in the early 
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winter when the PM2.5 readings are at their greatest value.  This figure also demonstrates the 

cyclical behavior typical of PM readings over the course of a year. 

 

 
Figure A-1.  Time series of one year of fine particulate matter readings. 
 
 

 For the moment, assume that the random component z(t) follows a log-normal 

distribution with a mean of 1.  We will justify this assumption shortly.  A log-normal random 

variable with a mean of 1 has the following density function: 
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where 2 is a parameter that controls the dispersion of the distribution.  Figure A-2 shows several 

log-QRUPDO�IXQFWLRQV�IRU�GLIIHUHQW�YDOXHV�RI� 2.  All of the densities in the figure have a mean 

value of 1. 
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Figure A-2.  Log-normal densities with mean=1 and 2 = 0.05, 0.3, and 0.5. 

 
 

 Our model hypothesizes that, assuming bias and measurement error are nonexistent, 

dividing the true observation at a time step by the best fitting sine curve will produce a residual 

draw from a log-normal distribution.  For the dataset illustrated in Figure A-1, we fit the best 

fitting sine curve to the data and examined the residuals.  The following two figures show the 

original data with the fitted sine curve and the distribution of the residuals.  An overlay of a 

log-normal distribution has been placed on top of the residuals to show that the log-normal 

assumption appears to be valid. 

 



A-6 

 

 

Figure A-3.  Data from Figure A-1 with the fitted sine curve (assuming log-normal 
multiplicative errors). 

 

 

Figure A-4.  Residuals from Figure A-3 with a log-normal density superimposed. 
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 Similar results can be obtained for PMcoarse and PM10.  We do not demonstrate those 

results here. 

 

A.2  Incorporating Correlation Between Series 

 

 The error terms for PMcoarse and PM2.5 do not vary independently.  When PM2.5 rises 

above its mean value, PMcoarse is likely to do the same thing.  For this reason, correlation between 

the two series is incorporated into the model.  Bringing this correlation into the model is 

performed through the z(t) components; when generating random log-normal draws for z2.5(t) and 

zc(t) we make sure that these draws share a specific correlation.  Generation of correlated normal 

random variables is simple [see Robert and Cassella (1999) for details], and correlated log-

normal random variables can be approximated by exponentiating correlated normal random 

variables. 

 

A.3  Incorporating Autocorrelation Within Each Series 

 

 In addition to random error around the mean sine curve, it is apparent that the random 

components exhibit autocorrelation.  In other words, for a single series, random realizations at 

adjacent time steps are not independent.  Look again at the series in Figure A-3.  When the series 

goes above its mean value, chances are that the value of the next random component will also be 

above the mean value.  The series does not “ jump around”  enough to be considered completely 

random.  Incorporation of autocorrelation into a single series is performed in the same manner as 

incorporation of correlation between the series – we introduce it through the random component 

z(t).  If the series z(t) exhibits autocorrelation, the observations will as well.  We generate this 

autocorrelation in the simulator while maintaining the overall log-normal distribution of the full 

set of values z(t). 

 

A.4  Effects of bias and measurement error 

 

 Bias and measurement error are introduced into the model as described in Equations 3 

and 4.  Bias is a consistent addition or subtraction from the true value of a process.  In this 
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model, bias is considered to be multiplicative, so it should be interpreted as a proportion bias.  In 

other words, if the sampler being modeled consistently underestimates the true PM2.5 

concentration by 2 percent, we could set B2.5 = -0.02.  For the purposes of simulation, we assume 

that the true bias is unknown and that the user may be able to determine a maximum possible 

amount of bias, either positive or negative, for the sampler.  If the user is unable to determine the 

maximum bias possible, we recommend using the maximum level acceptable for PM2.5, namely 

10 percent (40 CFR 58). 

 

 Measurement error is simply random error in the readings around the true value.  As with 

bias, the model used to simulate PM assumes a multiplicative error, so measurement error should 

be considered a proportion error.  The simulator draws the random component of the error from a 

standard normal distribution and multiplies it by the user-input coefficient of variation . 
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Appendix 3B 

 
 
 

Precision and Bias Estimates used in PMc Data Quality Objective 
Report 



PMc Precision and Bias Estimates 
 

 
Precision 
Precision estimates for PMc were calculated for each method by site and for each method 
aggregated over all three sites.  The following formula was implemented. 
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Xij  = measurement from ith sampling period (i = 1…n) and jth sampler (j = 1…k) 
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i  is the standard deviation of the measurements from the ith 

sampling period.   
 
n = the number of times there are two or more co-located measurements available for 

estimating the precision.  For calculating precision by site, n had a maximum of 30.   
For the estimates which were aggregated over sites, n represented the number of runs 
over the three sites (up to a maximum of 90). 

 
Note:  The estimate adjusts for bias in the individual samplers (the rightmost summations 
in the precision formula).  However, the derivation of the formula assumes complete data 
and the adjustment may not be the “best” possible when some of the samplers do not 
operate all of the time.   
 
 
Bias 
Bias estimates for PMc were derived for each individual sampler by site, each sampler 
aggregated over all sites, each method by site, and each method aggregated over all sites.  
The FRM-1 sampler was chosen as the standard (truth) for the bias calculations.  The 
following formula illustrates the calculation for each sampler. 



 
Let   Xij  = measurement from ith sampling period (i = 1…n) and jth sampler (j = 1…k) 
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In computing the mean bias and mean absolute bias for each method, the mean was taken 
over all samplers of the same type.  As with the precision estimates, n varied according to 
the level of aggregation. 
 
Since the mean absolute bias statistic uses absolute values, the estimate does not have a 
tendency (negative or positive) associated with it. A sign will be designated by rank 
ordering the relative percent differences (with signs) for all bias estimates for a particular 
sites. Calculate the 25th and 75th percentiles.  The absolute bias would be flagged as 
positive if both the 25th and 75th percentiles where positive and negative if both are 
negative. The mean absolute bias would not be flagged with a sign if the percentiles were 
different signs.  
 
 
 




